US ERA ARCHIVE DOCUMENT

HIERARCHICAL (MULTI-SCALE) MODELING FRAMEWORK

Michael A. Celia

Department of Civil and Environmental Engineering
Princeton University

Collaborators:

Jan Nordbotten (Univ of Bergen and Princeton University)

Karl Bandilla (Princeton University)

Sarah Gasda (CIPR / Univ of Bergen)

OUTLINE

- Model Complexity and Practical Models
- Simple Vertical Equilibrium Models
- Multi-scale Models
 - Vertical Integration and Vertical Reconstruction
 - Dissolution and Convective Mixing
 - Concentrated features / leakage pathways
- Example Calculations
- Final Remarks

A HIERARCHY OF MODELS

Model Complexity

TO SET THE NEW PARTY PAR

SIMPLEST ANALYTICAL SOLUTION

- Horizontal, homogeneous formations.
- Constant injection rate in a single vertical well.
- Vertical Equilibrium and Sharp Interface

Brine
$$\chi \equiv \frac{\pi \Phi r^2}{Q_{\Sigma}}$$

$$\frac{S_c(\chi)}{s_{c,T}} = \frac{h_{T,M}}{h_{T,B}} = \begin{cases} 0 & \text{if} \quad s_{c,T}\chi \ge \lambda \\ \frac{1}{\lambda - 1} \left(\sqrt{\frac{\lambda}{s_{c,T}\chi}} - 1 \right) & \text{if} \quad \lambda^{-1} < s_{c,T}\chi < \lambda \\ 1 & \text{if} \quad 0 < s_{c,T}\chi \le \lambda^{-1} \end{cases}$$

$$\Gamma = 2 \frac{\pi K \Lambda_b' \Delta_\alpha \rho g h_{T,B}}{Q_{\Sigma}} \ (< 0.1)$$

MONTY.PRINCETON.EDU/CO2INTERFACE

MONTY.PRINCETON.EDU/CO2INTERFACE

A HIERARCHY OF MODELS

Fully coupled, Nonisothermal, highly resolved 3-D Multi-phase **Multi-component models** (Parallel Numerical Algorithms) **Computing Effort** De-coupled, simplified 3-D **Multi-phase models Vertically Integrated 2-D 2D Numerical** (Quasi 3-D) Models Solutions ("VESA") Simplified Vertically Web Interface: Simple plumes plus well leakage ("ELSA") **Integrated Models** (Analytical Solutions)

Princeton University

Model Complexity

A HIERARCHY OF MODELS

Fully coupled, Nonisothermal, highly resolved 3-D Multi-phase **Multi-component models** (Parallel Numerical Algorithms) **Computing Effort** De-coupled, simplified 3-D **Multi-phase models Vertically Integrated 2-D** (Quasi 3-D) Models "Multi-scale" **Framework Simplified Vertically Integrated Models** (Analytical Solutions)

Model Complexity

SPATIAL SCALES

(See: Nordbotten and Celia, 2012)

TEMPORAL SCALES

(See: Nordbotten and Celia, 2012)

Vertically Integrated Models (VESA)

Key Assumption: Density segregation has occurred $(t^* << T)$.

Simplest Case: Zero velocity along x₃ ("vertical equilibrium"

or "Dupuit assumption")

$$t^* \sim f(\Delta \rho, k_z, H, k_{rel}^*)$$

Caprock

Brine region

CO2 region

Vertically Integrated Models

$$\Phi \frac{\partial S_{\alpha}}{\partial t} - \nabla_{||} \cdot (K \Lambda_{\alpha} (\nabla_{||} P_{\alpha} - \varrho_{\alpha} G)) = \Upsilon_{\alpha}$$

$$\Phi = \int_{\zeta_B}^{\zeta_T} \varphi \, dx_3 \qquad S_\alpha = \frac{1}{\Phi} \int_{\zeta_B}^{\zeta_T} \varphi s_\alpha \, dx_3$$

$$K = \int_{\zeta_B}^{\zeta_T} \mathbf{k}_{||} dx_3 \qquad \mathbf{\Lambda}_{\alpha} = K^{-1} \int_{\zeta_B}^{\zeta_T} \mathbf{k}_{||} \mathbf{\lambda}_{\alpha,||} dx_3 \qquad G = \mathbf{e}_{||} \cdot \mathbf{g} + (\mathbf{g} \cdot \mathbf{e}_3) \nabla_{||} \zeta_P$$

 P_{α} is the phase pressure at a chosen datum elevation ($x_3 = \zeta_p$)

- 1. Solve coarse equation for $S_{\alpha}(x_1, x_2, t), P_{\alpha}(x_1, x_2, t)$
- **2. Reconstruct** $\hat{s}_{\alpha}(x_1, x_2, x_3, t), \ \hat{p}_{\alpha}(x_1, x_2, x_3, t)$
- 3. Update mobilities $\hat{\lambda}_{\alpha}(x_1, x_2, x_3, t), \Lambda_{\alpha}(x_1, x_2, x_3, t)$

Sharp Interface Assumption

TYTE MAN INTE

(See: Court et al., 2012)

Dissolution and Geochemistry

CO₂ Plume: Equilibrium Partitioning

Dissolution and Geochemistry

CO₂ Plume: Equilibrium Partitioning

MODELS WITH CAPILLARY TRAPPING AND DISSOLUTION

(See: Bandilla et al., 2013; Gasda et al., 2011, 2012; Nordbotten and Celia, 2012)

LARGE-SCALE APPLICATION OF VE MODEL

Long-term Predictions

Fault, Fractures, Wells, Leakage

Modified "Peaceman-type" corrections

CONCLUDING COMMENTS

- 1. Vertically integrated models are often reasonable choices for practical calculations
- 2. A Multi-scale framework allows assumptions and representations across scales to be identified explicitly.
- 3. Most important processes can be included.
- 4. Extensions include complete hysteresis, thermal effects, geomechanics, and vertical dynamics.
- 5. Models should be compatible with the questions being asked and the available data.

MULTI-SCALE MODELS

Upscaling ←→→ Downscaling

Compression ← → Reconstruction

MULTI-SCALE MODELS

Upscaling ←→→ Downscaling

Compression ← → Reconstruction

$$\varphi = \frac{V_{voids}}{V_{tot}}$$

$$s_{\alpha} = \frac{V_{\alpha}}{V_{voids}}$$

MULTI-SCALE MODELS

Upscaling ←→→ Downscaling

Compression ← → Reconstruction

$$\varphi = \frac{V_{voids}}{V_{tot}}$$

$$s_{\alpha} = \frac{V_{\alpha}}{V_{voids}}$$

